Viscosity characterizations and convex analysis of quasiconvex and robustly quasiconvex functions

  • warning: Parameter 1 to drutex_pdf_nodeapi() expected to be a reference, value given in /irmacs/drupal/drupal-6x/sites/jonfest2011.irmacs.sfu.ca/modules/drutex/drutex.module on line 829.
  • warning: Parameter 1 to drutex_pdf_nodeapi() expected to be a reference, value given in /irmacs/drupal/drupal-6x/sites/jonfest2011.irmacs.sfu.ca/modules/drutex/drutex.module on line 829.
  • warning: Parameter 1 to drutex_pdf_nodeapi() expected to be a reference, value given in /irmacs/drupal/drupal-6x/sites/jonfest2011.irmacs.sfu.ca/modules/drutex/drutex.module on line 829.
Speaker: 

Goebel, Rafal

Affiliation: 
Loyola University

Abstract

A quasiconvex function is a function whose sublevel sets are convex. A function which is quasiconvex under every linear perturbation is a convex function. A robustly quasiconvex function (also called s-quasiconvex) is a function which is quasiconvex under sufficiently small linear perturbations.

The talk will characterize quasiconvex and robustly quasiconvex nonsmooth functions as viscosity solutions of certain second-order partial differential equations. Some related uniqueness results for boundary problems will be mentioned. Examples and convex-analytic properties of robustly quasiconvex functions will be presented.

This is joint work with E.N. Barron and R.R. Jensen.

Video: 

Details

Date & Time: 
Monday, May 16, 2011 - 15:15 - 15:45
Venue/Room: 
ASB 10900